MS Excel для новичков и профессионалов

На сайте Вы найдете более 600 наиболее часто встречающихся стандартных задач MS EXCEL. Большинство статей содержат файлы примеров и рисунки. Решения адаптированы и проверены для использования в EXCEL 2007. Совместимость с другими версиями Microsoft Excel (2003, 2010, 2013) указывается отдельно. Примеров с макросами и VBA на сайте нет, все задачи решены с применением стандартного функционала MS EXCEL.

MS Excel для специалистов

Аннуитет в Excel
Простые и сложные проценты в Excel
Расчет кредитов и вкладов в Excel
Расчет будущей и приведенной стоимости Excel
Поиск решения в excel
Комбинаторика в Excel
Матрицы в Excel
Распределения вероятностей в Excel
Описательная статистика в Excel
Список новых статей

Научимся вращать в MS EXCEL фигуры вокруг координатных осей, а также поворачивать плоскости вокруг произвольной оси. Для этого используем соответствующие матрицы вращения. Также покажем, что проекция фигуры на плоскость, построенная с помощью диаграммы типа Точечная, может служить альтернативой диаграмме типа Поверхность.

Трансформация (преобразование) геометрической фигуры означает ее изменение по определенным правилам. Например, вращение, смещение или изменение масштаба некого прямоугольника на плоскости. Правила, по которым происходит изменение, будем записывать в матричном виде. Используем произведение матриц для применения к фигуре сразу нескольких преобразований. Также используем однородную систему координат (Homogenous Coordinates). Здесь рассмотрим трансформацию в двумерном пространстве с использованием MS EXCEL.

Для сложных иерархических структур с тремя и более уровнями создадим Многоуровневый связанный список типа Предок-Родитель. Теперь структуры типа: Регион-Страна-Город-Улица можно создавать в MS EXCEL.

Научимся с помощью формул переворачивать в MS EXCEL столбец вверх ногами (чтобы данные расположенные в последних строках стали отображаться первыми).

Преобразуем число из текстовой формы в обычное число из цифр: например, "сто пятьдесят три" преобразуем в 153.

Критерий независимости хи-квадрат используется для определения связи между двумя категориальными переменными. Примерами пар категориальных переменных являются: Семейное положение vs. Уровень занятости респондента; Порода собак vs. Профессия хозяина, Уровень з/п vs. Специализация инженера и др. При вычислении критерия независимости проверяется гипотеза о том, что между переменными связи нет. Вычисления будем производить с помощью функции MS EXCEL 2010 ХИ2.ТЕСТ() и обычными формулами.