Подсчитаем в MS EXCEL количество перестановок из n элементов. С помощью формул выведем на лист все варианты перестановок (английский перевод термина: permutation).
Перестановкой множества из n элементов называется расположение элементов в определенном порядке.
Элементами множества могут быть числа, буквы и вообще любые объекты. Главное, чтобы эти элементы были различными. Т.к. любому объекту можно сопоставить число, то для Перестановок обычно используют конечное множество целых чисел, например, {1; 2; 3; 4; 5}. Хотя множества из букв также можно часто встретить в литературе. Например, все различные Перестановки множества из трех элементов {a, b, c} – это abc , acb , bac , bca , cab , cba .
Число Перестановок n элементов равно n! (факториал).
Для вычисления факториала в MS EXCEL есть функция =ФАКТР() , английский вариант FACT(). Понятно, что число перестановок растет очень быстро с ростом n: для n=7 число перестановок равно 5040. Справедливости ради, нужно отметить, что зачастую сами варианты перестановок находить не требуется, главное – найти их количество.
Примечание : Перестановки можно считать частным случаем размещений при n=k (см. статью Размещения без повторений: Комбинаторика в MS EXCEL ). Поэтому для вычисления количества перестановок можно использовать функцию ПЕРЕСТ() . Для n=7 число Перестановок вычисляется по формуле =ПЕРЕСТ(7;7)
Примечание : О Перестановках с повторениями (с возвращением элементов обратно во множество, из которого они берутся, после выборки каждого элемента) можно прочитать в статье Перестановки с повторениями: Комбинаторика в MS EXCEL .
В файле примера создана универсальная формула для вывода всех Перестановок для заданного n. Например, для n=3.
6 машин разных марок участвуют в гонках на выживание: LADA Granta, Hyundai Solaris, KIA Rio, Renault Duster, Lada Kalina, Volkswagen Polo. Определить число возможных вариантов распределения мест между всеми участниками.
Нам нужно определить число перестановок 6 машин на 6-и местах. Т.е. n=6. Оказывается, что таких перестановок 720: =ПЕРЕСТ(6;6) или 6! =ФАКТР(6)
Воспользуемся файлом примера , чтобы найти все варианты перестановок.
Произвольным образом сопоставим маркам машин числовые значения и сделаем сокращения названий марок: LADA Granta (LG=1), Hyundai Solaris (HS=2), …
Введя в ячейке В5 значение 6, определим все варианты расстановок машин на занятых ими в гонке местах.
Примечание : О Размещениях можно прочитать в статье Размещения без повторений: Комбинаторика в MS EXCEL , а о Сочетаниях в статье Сочетания без повторений: Комбинаторика в MS EXCEL .
Перебор всех возможных перестановок может потребоваться для решения различных задач (см. статью Поиск решения MS EXCEL (6.2). Задача коммивояжера (полный граф, нелинейная модель) и Вычисление определителя матрицы в MS EXCEL ).
Для каждой перестановки a 1, a 2, a 3,..., a n из n целых чисел 1, 2, 3, ..., n , инверсией называется пара ( a i, a j) если для i < j выполняется a i > a j. Число инверсией в перестановке показывает насколько перестановка является "несортированной" по возрастанию.
Например, число инверсий в перестановке 1, 2, 3, 4 равно 0 (перестановка из 4-х целых чисел отсортирована по возрастанию от 1 до 4), а число инверсий в перестановке 4, 3, 1, 2 равно 5, т.к.:
В файле примера для каждой Перестановки подсчитывается число инверсией.
Инверсии перестановок, например, используются при вычислении определителя матрицы (см. статью Вычисление определителя матрицы в MS EXCEL ).
© Copyright 2013 - 2024 Excel2.ru. All Rights Reserved
Комментарии