Дисперсия и стандартное отклонение в MS EXCEL

Вычислим в MS EXCEL дисперсию и стандартное отклонение выборки. Также вычислим дисперсию случайной величины, если известно ее распределение.

Сначала рассмотрим дисперсию, затем стандартное отклонение.

Дисперсия выборки

Дисперсия выборки (выборочная дисперсия, sample variance) характеризует разброс значений в массиве относительно среднего.

Все 3 формулы математически эквивалентны.

Из первой формулы видно, что дисперсия выборки это сумма квадратов отклонений каждого значения в массиве от среднего, деленная на размер выборки минус 1.

В MS EXCEL 2007 и более ранних версиях для вычисления дисперсии выборки используется функция ДИСП(), англ. название VAR, т.е. VARiance. С версии MS EXCEL 2010 рекомендуется использовать ее аналог ДИСП.В(), англ. название VARS, т.е. Sample VARiance. Кроме того, начиная с версии MS EXCEL 2010 присутствует функция ДИСП.Г(), англ. название VARP, т.е. Population VARiance, которая вычисляет дисперсию для генеральной совокупности. Все отличие сводится к знаменателю: вместо n-1 как у ДИСП.В(), у ДИСП.Г() в знаменателе просто n. До MS EXCEL 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР().

Дисперсию выборки можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера)
=КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)
=(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1) – обычная формула
=СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1) – формула массива

Дисперсия выборки равна 0, только в том случае, если все значения равны между собой и, соответственно, равны среднему значению. Обычно, чем больше величина дисперсии, тем больше разброс значений в массиве.

Дисперсия выборки является точечной оценкой дисперсии распределения случайной величины, из которой была сделана выборка. О построении доверительных интервалов при оценке дисперсии можно прочитать в статье Доверительный интервал для оценки дисперсии в MS EXCEL.

Дисперсия случайной величины

Чтобы вычислить дисперсию случайной величины, необходимо знать ее функцию распределения.

Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна математическому ожиданию квадрата отклонения от среднего E(X): Var(Х)=E[(X-E(X))2]

Если случайная величина имеет дискретное распределение, то дисперсия вычисляется по формуле:

где xi – значение, которое может принимать случайная величина, а μ – среднее значение (математическое ожидание случайной величины), р(x) – вероятность, что случайная величина примет значение х.

Если случайная величина имеет непрерывное распределение, то дисперсия вычисляется по формуле:

где р(x) – плотность вероятности.

Для распределений, представленных в MS EXCEL, дисперсию можно вычислить аналитически, как функцию от параметров распределения. Например, для Биномиального распределения дисперсия равна произведению его параметров: n*p*q.

Примечание: Дисперсия, является вторым центральным моментом, обозначается D[X], VAR(х), V(x). Второй центральный момент - числовая характеристика распределения случайной величины, которая является мерой разброса случайной величины относительно математического ожидания.

Примечание: О распределениях в MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL.

Размерность дисперсии соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность дисперсии будет кг2. Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из дисперсиистандартное отклонение.

Некоторые свойства дисперсии:

 Var(Х+a)=Var(Х), где Х - случайная величина, а - константа.

 Var(aХ)=aVar(X)

 Var(Х)=E[(X-E(X))2]=E[X2-2*X*E(X)+(E(X))2]=E(X2)-E(2*X*E(X))+(E(X))2=E(X2)-2*E(X)*E(X)+(E(X))2=E(X2)-(E(X))2

Это свойство дисперсии используется в статье про линейную регрессию.

 Var(Х+Y)=Var(Х) + Var(Y) + 2*Cov(Х;Y), где Х и Y - случайные величины, Cov(Х;Y) - ковариация этих случайных величин.

Если случайные величины независимы (independent), то их ковариация равна 0, и, следовательно, Var(Х+Y)=Var(Х)+Var(Y). Это свойство дисперсии используется при выводе стандартной ошибки среднего.

Покажем, что для независимых величин Var(Х-Y)=Var(Х+Y). Действительно, Var(Х-Y)= Var(Х-Y)= Var(Х+(-Y))= Var(Х)+Var(-Y)= Var(Х)+Var(-Y)= Var(Х)+(-1)2Var(Y)= Var(Х)+Var(Y)= Var(Х+Y). Это свойство дисперсии используется для построения доверительного интервала для разницы 2х средних.

Стандартное отклонение выборки

Стандартное отклонение выборки - это мера того, насколько широко разбросаны значения в выборке относительно их среднего.

По определению, стандартное отклонение равно квадратному корню из дисперсии:

Стандартное отклонение не учитывает величину значений в выборке, а только степень рассеивания значений вокруг их среднего. Чтобы проиллюстрировать это приведем пример.

Вычислим стандартное отклонение для 2-х выборок: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у выборок существенно отличается. Для таких случаев используется Коэффициент вариации (Coefficient of Variation, CV) - отношение Стандартного отклонения к среднему арифметическому, выраженного в процентах.

В MS EXCEL 2007 и более ранних версиях для вычисления Стандартного отклонения выборки используется функция =СТАНДОТКЛОН(), англ. название STDEV, т.е. STandard DEViation. С версии MS EXCEL 2010 рекомендуется использовать ее аналог =СТАНДОТКЛОН.В(), англ. название STDEV.S, т.е. Sample STandard DEViation.

Кроме того, начиная с версии MS EXCEL 2010 присутствует функция СТАНДОТКЛОН.Г(), англ. название STDEV.P, т.е. Population STandard DEViation, которая вычисляет стандартное отклонение для генеральной совокупности. Все отличие сводится к знаменателю: вместо n-1 как у СТАНДОТКЛОН.В(), у СТАНДОТКЛОН.Г() в знаменателе просто n.

Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера)
=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1))
=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Другие меры разброса

Функция КВАДРОТКЛ() вычисляет сумму квадратов отклонений значений от их среднего. Эта функция вернет тот же результат, что и формула =ДИСП.Г(Выборка)*СЧЁТ(Выборка), где Выборка - ссылка на диапазон, содержащий массив значений выборки (именованный диапазон). Вычисления в функции КВАДРОТКЛ() производятся по формуле:

Функция СРОТКЛ() является также мерой разброса множества данных. Функция СРОТКЛ() вычисляет среднее абсолютных значений отклонений значений от среднего.  Эта функция вернет тот же результат, что и формула =СУММПРОИЗВ(ABS(Выборка-СРЗНАЧ(Выборка)))/СЧЁТ(Выборка), где Выборка - ссылка на диапазон, содержащий массив значений выборки.

Вычисления в функции СРОТКЛ() производятся по формуле:

Связанные статьи

Похожие задачи
Прочитайте другие статьи, решающие похожие задачи в MS Excel. Это позволит Вам решать широкий класс подобных задач.
Средняя: 4.4 (5 оценок)